Top 40 NumPy Functions Every Data Pro Should Know

Whether you’re analyzing data, building machine learning models, or crunching numbers, NumPy is a core part of your Python workflow. This post gives you a fast, practical overview of 40 frequently used NumPy functions and what each one does. You’ll also find clear examples to help you apply them right away.

Array Creation

  1. np.array(<list>) – Create array from Python list
  2. np.array(<list-of-lists>) – Create 2D array from nested lists
  3. np.array(<pandas-series>) – Convert Pandas Series to array
  4. df.values – Convert DataFrame to 2D array
  5. np.zeros(size) – Create array of zeros
  6. np.ones(size) – Create array of ones
  7. np.eye(size) – Create identity matrix
  8. np.arange(start, stop, step) – Range of evenly spaced integers
  9. np.linspace(start, stop, count) – Range of evenly spaced floats
  10. np.random.randint(low, high, size) – Random integers in range
  11. np.random.random(size) – Random floats in [0.0, 1.0)

Array Manipulation

  1. array.reshape(<new-shape>) – Change array shape
  2. array.transpose() / array.T – Swap array axes
  3. np.concatenate((arrays), axis) – Merge arrays
  4. np.flatten(array) – Convert to 1D array
  5. np.unique(array, axis) – Get unique elements
  6. array.tolist() – Convert array to Python list

Search & Indexing

  1. np.argmax(array, axis) – Index of max value
  2. np.argmin(array, axis) – Index of min value
  3. np.where(condition, x, y) – Conditional replacement
  4. np.nonzero(array) – Indices of non-zero elements

Trigonometry

  1. np.sin(array) – Sine of each value
  2. np.cos(array) – Cosine of each value
  3. np.tan(array) – Tangent of each value

Rounding

  1. np.floor(array) – Round down
  2. np.ceil(array) – Round up
  3. np.rint(array) – Round to nearest integer
  4. np.round_(array, decimals) – Round to decimal places

Exponent & Logarithms

  1. np.exp(array) – Exponential (e^x)
  2. np.log(array) – Natural logarithm
  3. np.sqrt(array) – Square root

Statistics

  1. np.sum(array, axis) – Sum of elements
  2. np.mean(array, axis) – Mean value
  3. np.std(array, axis) – Standard deviation

Matrix Operations

  1. np.dot(a, b) – Dot product or matrix multiplication
  2. np.matmul(a, b) – Matrix multiplication
  3. a @ b – Matrix multiplication (shorthand)
  4. np.linalg.norm(array, ord) – Vector/matrix norm

Sorting

  1. np.sort(array, axis) – Sorted array
  2. np.argsort(array, axis) – Indices for sorted order

Final Thoughts

These functions form the backbone of any serious data work in Python. Mastering them will save time, reduce bugs, and unlock the real power of scientific computing.

Which function do you use most?
What should we cover next—Pandas or Matplotlib?

Share your thoughts in the comments.

🎓 Learn with these top Python + Data Science Courses:
🔗 Google IT Automation with Python → https://imp.i384100.net/c/5617308/2804871/14726
🔗 Microsoft Python Development Certificate → https://imp.i384100.net/c/5617308/2720162/14726
🔗 IBM Data Science Certificate → https://imp.i384100.net/c/5617308/1688120/14726
🔗 SQL for Data Science → https://imp.i384100.net/c/5617308/1688118/14726

Amr Abdelkarem

Owner

No Comments

Leave a Comment