
Demystifying
Concurrency
in Python
by Amr Abdelkarem

@programmingvalley.com 



by Amr AbdElkarem 

Program: Static code instructions.

Process: Running instance of a program
with isolated memory.

Thread: Executing unit within a process;
shares process memory.

@programmingvalley.com 

Program, Process & Thread



by Amr AbdElkarem 

RUNNING, FINISHED, CANCELLED, NEW,
STARTING, WAITING, LOCKED,
TERMINATED

Note: “Runnable” is part of WAITING in
Python.

@programmingvalley.com 

Thread States (Python 3.9)



by Amr AbdElkarem 

@programmingvalley.com 

Thread States (Python 3.9)



Concurrency: Multiple tasks making
progress via interleaving (context
switching).

Parallelism: Tasks running at the same
time on multiple CPUs/cores.

Concurrency ≠ Parallelism .

by Amr AbdElkarem 

@programmingvalley.com 

Concurrency vs Parallelism



by Amr AbdElkarem 

@programmingvalley.com 

Concurrency vs Parallelism



Runs multiple threads in one process.

Threads share memory and are ideal for
concurrent I/O.

Example code snippet for running two
tasks concurrently.

by Amr AbdElkarem 

@programmingvalley.com 

Multithreading in Python



by Amr AbdElkarem 

@programmingvalley.com 

Multithreading in Python



Coroutines: Cooperative multitasking in a
single thread.

Use async / await to yield control during
blocking I/O.

Great for lightweight concurrent logic with
minimal overhead.

by Amr AbdElkarem 

@programmingvalley.com 

Coroutines & Async/Await



Key issues to watch out for:
Race conditions
Deadlocks
Starvation
Synchronization overhead
Debugging complexity .

by Amr AbdElkarem 

@programmingvalley.com 

Challenges in Concurrency



Mutex: Protect shared resource with
lock/unlock.

Semaphore: Control access with
counters.

Barrier: Synchronize threads so they wait
for each other.
Includes example code for each.

by Amr AbdElkarem 

@programmingvalley.com 

Synchronization Primitives



Runs multiple processes in parallel, each
with isolated memory.

Pros: True parallelism.

Cons: Higher memory and communication
overhead, complexity in sharing data.

by Amr AbdElkarem 

@programmingvalley.com 

Multiprocessing in Python



Coroutines — Best for efficient I/O-bound
tasks.

Threads — Good for concurrency, less
setup, but beware of GIL.

Processes — Use for CPU-intensive tasks
needing parallelism.

by Amr AbdElkarem 

@programmingvalley.com 

When to use what?



Find this
useful? like
and share this
post with your
friends.

@programmingvalley.com 
by Amr AbdElkarem Save


