Demystifying
Concurrency P
in Python - '

o AmrAbdelkar-e_m ; § ; ;

~ @programmingvalley.com B (%) e o o

by Amr AbdElkarem

Program, Process & Thread

Program: Static code instructions.

Process: Running instance of a program
with isolated memory.

Thread: Executing unit within a process;
shares process memory.

@programmingvalley.com -

by Amr AbdElkarem

Thread States (Python 3.9)

RUNNING, FINISHED, CANCELLED, NEW,
STARTING, WAITING, LOCKED,
TERMINATED

Note: “Runnable” is part of WAITING In
Python.

@programmingvalley.com -

by Amr AbdElkarem

Thread States (Python 3.9)

import threading
import time

def worker():

print(f"Worker thread
{threading.get_ident()} started")

time.sleep(2)

print(f"Worker thread
{threading.get_ident()} finished")

t = threading.Thread(target=worker)
print(f"Thread {t.ident} created, state:
{t.1is_alive()}")

t.start()
print(f"Thread {t.ident} started, state:
{t.is alive()}")

time.sleep(1)
print(f"Thread {t.ident} state:
{t.1s_alive()}")

t.join()
print(f"Thread {t.ident} joined, state:
{t.1s_alive()}")

@programmingvalley.com

by Amr AbdElkarem

Concurrency vs Parallelism

Concurrency: Multiple tasks making
progress via interleaving (context
switching).

Parallelism: Tasks running at the same
time on multiple CPUs/cores.

Concurrency = Parallelism .

@programmingvalley.com -

by Amr AbdElkarem

Concurrency vs Parallelism

Concurrency Parallelism

@programmingvalley.com

by Amr AbdElkarem

Multithreading in Python

Runs multiple threads in one process.

Threads share memory and are ideal for
concurrent |/0O.

Example code snippet for running two
tasks concurrently.

@programmingvalley.com -

by Amr AbdElkarem

Multithreading in Python

import time
from threading import Thread

def task1():
for 1 1n range(5):
print("Task 1 1s running")
time.sleep(1)
def task2():
for 1 1n range(5):
print("Task 2 1s running")
time.sleep(1)
if __name_ == "' main__ "':
Run tasks concurrently using
multithreading
t1 = Thread(target=task1)
t2 = Thread(target=task2)
t1.start()
t2.start()
t1.j01n()
t2.j01in()

@programmingvalley.com -

by Amr AbdElkarem

Coroutines & Async/Await

Coroutines: Cooperative multitasking in a
single thread.

Use async / await to yield control during
blocking I/O.

Great for lightweight concurrent logic with
minimal overhead.

@programmingvalley.com -

by Amr AbdElkarem

Challenges in Concurrency

Key Iissues to watch out for:
e Race conditions
e Deadlocks
e Starvation
e Synchronization overhead
e Debugging complexity .

@programmingvalley.com -

by Amr AbdElkarem

Synchronization Primitives

Mutex: Protect shared resource with
lock/unlock.

Semaphore: Control access with
counters.

Barrier: Synchronize threads so they wait

for each other.
Includes example code for each.

@programmingvalley.com -

by Amr AbdElkarem

Multiprocessing in Python

Runs multiple processes in parallel, each
with isolated memory.

Pros: True parallelism.

Cons: Higher memory and communication
overhead, complexity in sharing data.

@programmingvalley.com -

by Amr AbdElkarem

When to use what?

Coroutines — Best for efficient |/O-bound
tasks.

Threads — Good for concurrency, less
setup, but beware of GIL.

Processes — Use for CPU-Intensive tasks
needing parallelism.

@programmingvalley.com -

Find this x
useful? like
and share this
post with your
friends.

by Amr AbdElkarem -
. Save
@programmingvalley.com

