
Quick SQL Reference: Your Go-To Cheat Sheet (Clear and direct)
Brought to you by programmingvalley.com

1.Finding Data
SELECT: Retrieve data from a database.

SELECT * FROM table_name;
SELECT column1, column2 FROM table_name WHERE condition;

DISTINCT: Return unique values.
SELECT DISTINCT column_name FROM table_name;

WHERE: Filter rows based on conditions.
WHERE condition1 AND condition2
WHERE condition1 OR condition2
WHERE NOT condition
WHERE EXISTS (SELECT column_name FROM table_name WHERE condition)

ORDER BY: Sort results (ASC/DESC).
ORDER BY column DESC;

SELECT TOP/LIMIT: Limit the number of records returned.
SELECT TOP number columns FROM table_name; (SQL Server)
SELECT columns FROM table_name LIMIT count OFFSET offset; (MySQL)

LIKE: Search for patterns using wildcards (%, _).
WHERE column_name LIKE 'a%'; (starts with 'a')
WHERE column_name LIKE '%or%'; (contains 'or')

IN: Specify multiple values in a WHERE clause.
WHERE column_name IN (value1, value2);
WHERE column_name IN (SELECT STATEMENT);

BETWEEN: Select values within a range (inclusive).
WHERE column_name BETWEEN value1 AND value2;

NULL: Check for fields with no value.
WHERE column_name IS NULL;
WHERE column_name IS NOT NULL;

AS: Assign temporary names (aliases) to columns or tables.
SELECT column_name AS alias_name FROM table_name;

UNION / INTERSECT / EXCEPT: Combine or compare result-sets of SELECT
statements.

UNION: Combines and returns distinct values. Use UNION ALL for duplicates.
INTERSECT: Returns common records.
EXCEPT: Returns records from the first query not found in the second.

ANY / ALL: Operators for subquery conditions.
ANY: True if any subquery value meets the condition.
ALL: True if all subquery values meet the condition.

GROUP BY: Group result-sets with aggregate functions (COUNT, MAX, MIN, SUM,
AVG).

GROUP BY column_name ORDER BY COUNT(column_name) DESC;
HAVING: Filter results of aggregate functions.

HAVING COUNT(column_name) > 5;
WITH (CTE): Define temporary, named result-sets.

2.Data Modification
INSERT INTO: Add new records.

INSERT INTO table_name (column1, column2) VALUES (value1, value2);
UPDATE: Modify existing records.

UPDATE table_name SET column1 = value1 WHERE condition;
DELETE: Remove records.

DELETE FROM table_name WHERE condition;
DELETE * FROM table_name;

3.Reporting Queries (Aggregate Functions)
COUNT(): Returns the number of occurrences.

SELECT COUNT(DISTINCT column_name) FROM table_name;
MIN() / MAX(): Returns the smallest/largest value.

SELECT MIN(column_name) FROM table_name;
AVG(): Returns the average value.

SELECT AVG(column_name) FROM table_name;
SUM(): Returns the total sum.

SELECT SUM(column_name) FROM table_name;

4.Join Queries
INNER JOIN: Returns records with matching values in both tables.

FROM table1 INNER JOIN table2 ON table1.column = table2.column;
LEFT (OUTER) JOIN: Returns all records from the left table, and matched from the
right.
RIGHT (OUTER) JOIN: Returns all records from the right table, and matched from the
left.
FULL (OUTER) JOIN: Returns all records when there's a match in either table.
Self JOIN: A table joined with itself.

FROM table1 T1, table1 T2 WHERE condition;

5.View Queries
CREATE VIEW: Create a virtual table based on a query.

CREATE VIEW view_name AS SELECT column1 FROM table_name;
SELECT: Retrieve data from a view.

SELECT * FROM view_name;
DROP VIEW: Delete a view.

DROP VIEW view_name;

6.Altering Table Queries
ADD COLUMN: Add a new column to a table.

ALTER TABLE table_name ADD column_name datatype;
MODIFY COLUMN: Change the data type of a column.

ALTER TABLE table_name MODIFY column_name datatype;
DROP COLUMN: Delete a column from a table.

ALTER TABLE table_name DROP COLUMN column_name;

7.Creating Table Query
CREATE TABLE: Create a new table.

CREATE TABLE table_name (column1 datatype, column2 datatype);

WHERE company_id = 14)

company_id pointer

10 _123

10 _129

11 _127

11 _138

12 _124

12 _130

14 _125

14 _131

pointer Id name

_123 10 Company A

_124 12 Company B

_125 14 Company C

_127 11 Company D

_129 10 Company A

_130 12 Company B

_131 14 Company C

_138 11 Company D

SQL Indexing

INNER JOIN Returns only matching records from both tables.

SELECT *
FROM A
INNER JOIN B ON A.key = B.key

LEFT JOIN Returns all records from A, and matching ones from B (if any).

SELECT *
FROM A
LEFT JOIN B ON A.key = B.key

LEFT ANTI JOIN Returns records from A that have no match in B.

SELECT *
FROM A
LEFT JOIN B ON A.key = B.key WHERE B.key IS NULL

RIGHT JOIN Returns all records from B, and matching ones from A (if any).

SELECT *
FROM A
RIGHT JOIN B ON A.key = B.key

RIGHT ANTI JOIN Returns records from B that have no match in A.

SELECT *
FROM A
RIGHT JOIN B ON A.key = B.key WHERE A.key IS NULL

FULL JOIN Returns all records from A and B, matched where possible.

SELECT *
FROM A
FULL JOIN B ON A.key = B.key

FULL ANTI JOIN Returns all records from A and B that do not match each other.

SELECT *
FROM A FULL JOIN B ON A.key = B.key
WHERE A.key IS NULL OR B.key IS NULL

SQL Joins

BEGIN TRANSACTION
→ Marks the start
→ Changes are temporary until finalized

Multiple SQL Operations
→ UPDATE ...
→ INSERT ...
→ DELETE ...

Decide Outcome
If all OK? → go to COMMIT
If error? → go to ROLLBACK

COMMIT
→ Save all changes permanently
→ Complete transaction successfully

ROLLBACK
→ Undo all changes
→ Return DB to its original state

SQL Transactions

